If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-16=0
a = 1; b = 32; c = -16;
Δ = b2-4ac
Δ = 322-4·1·(-16)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{17}}{2*1}=\frac{-32-8\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{17}}{2*1}=\frac{-32+8\sqrt{17}}{2} $
| 3·(250–x)=250+x | | 15r+2;r=2 | | (2x)=(x+42) | | 4y+5y=-27 | | x^2+0.0032x-0.0016=0 | | (3/5)p=9 | | 3q+5/10=2q-3/7 | | 3x+50+2x+30=180 | | 8x-6=2(x+3)+6x | | -3j+79j=-10j-7 | | 2(a-6)-5=3 | | 44°+(3x-11)°+(4x-7)°=180 | | 3(-2+5)=5x-7 | | -3+g+1=6+10g | | 6w=4=16 | | w−19=47 | | 5y+5=-20 | | 9r+1=7+8r | | 42+2x+2x+14=180 | | C-10=-8c-10 | | 3.7x=4.2 | | 15.5z=-77.5= | | 10-y=14+y | | 15x-x=23-2x | | 4x+2+90+3x-10=180 | | 8k=-9+5k | | 20(x+7)=180 | | 1/4(x+3)+3/4x=13/4 | | x÷2-6=-15 | | s=s=24 | | X^4-4X^3-X^2-14x-4=0 | | 30(x-10=15x |